domingo, 17 de octubre de 2010



Se trata de transformar un triángulo cualquiera (en el dibujo en color azul) en un triángulo equilátero (en el dibujo en color violeta). Para construirlo prolongamos los lados del triángulo azul hasta que corte a dos rectas paralelas cualesquiera que vamos a considerar como eje y recta límite, para mayor facilidad en la construcción hemos pasado una de estas rectas por un vértice del triángulo S.
Mediante la prolongación de los lados del triángulo azul tenemos tres líneas que cortan a la recta límite en los tres puntos HGF. Tomamos los puntos HG y hacemos el arco capaz de 60° (ya que un triángulo equilátero tiene tres ángulos de 60° pues 180° dividido entre tres es igual a este ángulo) y hacemos lo mismo también con los otros dos puntos GF. Tenemos dos circunferencias en cuya intersección está el centro de proyección de la homología N, uniendo este centro con los tres puntos HGF tenemos las direcciones de los lados del nuevo triángulo equilátero. Al prolongar los lados del triángulo azul obtenemos el punto S y el punto I en la intersección con el eje. Por el primero hacemos dos rectas paralelas a las direcciones NG NF y por el segundo I hacemos una recta paralela a la dirección NH, estas tres líneas paralelas defienden el triángulo violeta equilátero, homólogo del triángulo azul dado.


Óvalo - GeoGebra Hoja Dinámicahttp://los-angulos-en-la-circunferencia.blogspot.com.es/


Homología- transforma triángulo en equilátero





















This is a Java Applet created using GeoGebra from www.geogebra.org - it looks like you don't have Java installed, please go to www.java.com












Otro ejemplo donde se ven dos rectas homólogas que se cortan en el eje y las rectas límites equidistantes respectivamente del eje y centro de proyección.









Si un triángulo tiene un vértice sobre el eje implica que su homólogo también tendrá otro vértice sobre el mismo punto. La recta CA del triángulo se corta con la recta límite en el punto P’, la recta BC se corta en el punto P. El ángulo que forman las líneas OP OP’, es el ángulo real que forman los lados del triángulo.












Dos triángulos homólogos con sus rectas límites.
















Dos puntos homólogos A A’ están alineados con el centro de proyección O y pertenecen a rectas homólogas r r ‘que se cortan en el eje. Haciendo por el centro de proyección O dos rectas paralelas a las rectas homólogas r r’, obtenemos en la intersección con sus prolongaciones dos puntos j’ K.
Por ambos puntos pasan las rectas límites paralelas al eje.










Dos rectas homólogas AB y A’B’ están dispuestas siempre de tal forma que los puntos límites de ambas están sobre un paralelogramo vértices opuestos, en el que los otros vértices opuestos son el centro de proyección O y el punto de intersección de las rectas homólogas o punto doble.


No hay comentarios:

Publicar un comentario